
KIT – The Research University in the Helmholtz Association www.kit.edu

Tamim Asfour https://www.humanoids.kit.edu

Robotics I: Introduction to Robotics
Chapter 1 – Mathematical Foundations and Concepts of Robotics

https://www.humanoids.kit.edu/

Robotics I: Introduction to Robotics | Chapter 12

Mathematical Foundations of Robotics

Robotics I: Introduction to Robotics | Chapter 13

Motivation

ARMAR!
Bring me the apple

juice from the fridge

Robotics I: Introduction to Robotics | Chapter 14

What basic mathematical means are needed?

We need to describe positions of objects in space:

Where is the apple juice box? (at which
coordinates?)

Relative to which coordinate system?

▪ Relative to camera coordinate system?

▪ Relative to arm base (shoulder) coordinate system?

▪ Relative to robot mobile base coordinate system?

▪ Relative to world coordinate system?
(in the left corner of the kitchen)

Robotics I: Introduction to Robotics | Chapter 15

What basic mathematical means are needed?

We need to describe positions of objects in space:

We need to describe orientations of objects in space:

Is the bottle located directly in front of the robot?

Or to the left or to the right of the robot?

A framework to describe positions (translations) and orientations (rotations) is needed!

Robotics I: Introduction to Robotics | Chapter 16

This chapter is an introduction to the mathematical foundations of robotics

Mathematical methods for the description of rigid body transformations
(based on linear algebra)

Application of these methods to model robots

Kinematic Basis

Robotics I: Introduction to Robotics | Chapter 17

Definitions

Kinematics is the study of motion of bodies and systems based only on
geometry, i.e. without considering the physical properties and the forces
acting on them. The essential concept is a pose (position and orientation).

Statics studies forces and moments acting on an object at rest. The essential
concept is a stiffness.

Dynamics studies the relationship between the forces and moments acting on
a robot and accelerations they produce,

Robotics I: Introduction to Robotics | Chapter 18

Kinematics – Terminology (I)

End effector (hand, gripper, welding gun)

Robotics I: Introduction to Robotics | Chapter 19

Kinematics – Terminology (II)

Kinematic chain is a set of links connected by joints.

Kinematic chain can be represented by a graph.
The vertices represent joints and edges represent
links.

Kinematics chain
human hand

Kinematics chain
human body

Kinematics chain
left arm

Robotics I: Introduction to Robotics | Chapter 110

Kinematics – Terminology (II)

Kinematic chains: examples

q5

q6

q7

q3

q4

q1
q2

f3

f1

f2

f4

Kinematic chain ARMAR-I Kinematics chain ARMAR-IVARMAR-IV

Robotics I: Introduction to Robotics | Chapter 111

Kinematics – Degrees of Freedom (DoF)

Degrees of freedom (less formal definition) is the number of independent
parameters needed to specify the position of an object completely.

Examples:

▪ A point on a plane has 2 DoF

▪ A point in 3D space has 3 DoF

▪ Rigid body in a 2D space (i.e. on a plane) has 3 DoF

▪ Rigid body in 3D space has 6 DoF

Robotics I: Introduction to Robotics | Chapter 112

Conventions

In this lecture, we will use the following conventions for equation symbols:

Scalars: lower-case Latin letters

▪ Example: 𝑠, 𝑡 ∈ ℝ

Vectors: bold lower-case Latin letters

▪ Example: 𝐚, 𝐛, 𝐜 ∈ ℝ3

Matrices: upper-case Latin letters

▪ Example: 𝐀 ∈ ℝ3×3

Linear maps (linear transformations): upper-case Greek letters

▪ Example: 𝜙(⋅):ℝ3 → ℝ3

Robotics I: Introduction to Robotics | Chapter 113

Rigid Body Motion

A rigid body is a body that does not deform or change shape

Rigid body motion is characterized by two properties:

1. The distance between any two points remains invariant

→ The motion of the body is completely specified by the motion of
any point in the body.

→ All points of the body have the same velocity and same acceleration.

2. The orientations are preserved.
→ A right-handed coordinate system remains right-handed

Robotics I: Introduction to Robotics | Chapter 114

𝐒𝐎(𝟑) and 𝐒𝐄(𝟑)

Two groups which are of particular interest to us in robotics are

SO(3) – the special orthogonal group that represents rotations and

SE(3) – the special Euclidean group that represents rigid body motions

Elements of SO(3) are represented as 3 × 3 real matrices and satisfy

Element SE 3 are of the form 𝐩, 𝐑 , where 𝐩 ∈ ℝ3 and 𝐑 ∈ SO(3)

𝐑𝑇𝐑 = 𝐈 with det 𝐑 = 1
i.e., 𝑅 is a special
orthogonal matrix

Robotics I: Introduction to Robotics | Chapter 115

SO(3) und SE(3)

SO(3)
▪ Orientation

▪ 𝑅 ∈ 𝑆𝑂 3 ⊂ ℝ3×3

SE(3)

▪ Position and orientation

▪ 𝒑, 𝑅 ∈ 𝑆𝐸 3
with 𝒑 ∈ ℝ3, 𝑅 ∈ 𝑆𝑂(3)

𝑅 (𝒑, 𝑅)

x

z

y

𝒑

Robotics I: Introduction to Robotics | Chapter 116

Affine Geometry

We use affine geometry to describe spatial transformations.

These transformations are concatenations of rotations and translations

Spatial transformations can be represented mathematically in several ways:
▪ rotation matrices and translation vectors

▪ homogeneous matrices

▪ quaternions

▪ dual quaternions

This lecture will introduce the above representations.

Robotics I: Introduction to Robotics | Chapter 117

Euclidean Space (I)

Euclidean space is the vector space ℝ𝟑 with the standard scalar product
(also know as dot product or inner product).

Example:

A point 𝐜 located on a line between two points 𝐚 and 𝐛 can be represented as

𝐜 = 𝑡 ⋅ 𝐚 + 1 − 𝑡 ⋅ 𝐛, 𝑡 ∈ 0, 1 ⊂ ℝ, 𝐚, 𝐛, 𝐜 ∈ ℝ3.

Robotics I: Introduction to Robotics | Chapter 118

Euclidean Space (II)

A point 𝐚 in Euclidean space is represented by coordinates referring to a
coordinate system 𝐞𝑥, 𝐞𝑦, 𝐞𝑧.

𝐚 = 𝑎𝑥 ⋅ 𝐞𝑥 + 𝑎𝑦 ⋅ 𝐞𝑦 + 𝑎𝑧 ⋅ 𝐞𝑧 = (𝑎𝑥, 𝑎𝑦, 𝑎𝑧)
𝑇 . 𝐞𝑥, 𝐞𝑦, 𝐞𝑧 ∈ ℝ3

Conventions:
▪ We use orthonormal coordinate systems,

i.e. the base vectors 𝐞𝑥, 𝐞𝑦 , 𝐞𝑧 are unit vectors
and perpendicular (orthogonal) to one another.

▪ We use right-hand coordinate systems.

Right hand rule: If the thumb points in the direction
of the 𝒙-axis and the index finger points in the direction
of the 𝒚-axis then the middle finger indicates the
direction of the 𝒛-axis.

Source: Wikipedia

Robotics I: Introduction to Robotics | Chapter 119

Coordinate Systems (I)

Right-hand rule for right-handed coordinate systems

𝑥
𝑦

𝑧

𝑧

𝜑

Robotics I: Introduction to Robotics | Chapter 120

Coordinate Systems (II)

× : cross product

Right-handed
coordinate system

Left-handed
coordinate system

𝐞𝑥 × 𝐞𝑦 = 𝐞𝑧

𝐱 × 𝐲 = 𝐳

𝐞𝑥 × 𝐞𝑦 = −𝐞𝑧

𝐱 × 𝐲 = −𝐳

𝑧

𝑦

𝑥
𝐞𝑥

𝐞𝑦
𝐞𝑧

−𝑧

𝑧

𝑦

𝑥

𝐞𝑦

𝐞𝑥
𝐞𝑧

Robotics I: Introduction to Robotics | Chapter 121

Linear Maps, Endomorphism

Linear maps (transformations) which map Euclidean space onto itself are
called endomorphisms:

𝜙(⋅):ℝ3 → ℝ3

Endomorphisms can be represented by square matrices:

𝜙 𝐚 = 𝐀 ⋅ 𝐚, 𝐴 ∈ ℝ3×3

𝐴 describes a change of basis resulting from the original basis vectors
𝐞𝑥, 𝐞𝑦, 𝐞𝑧 and the new basis vectors 𝐞𝑥

′ , 𝐞𝑦
′ , 𝐞𝑧

′

𝐴 = 𝐞𝒙
′ 𝐞𝒚

′ 𝐞𝒛
′ ⋅ 𝐞𝑥 𝐞𝑦 𝐞𝑧

−1

Robotics I: Introduction to Robotics | Chapter 122

Isomorphismus

Bijective (reversible) endomorphisms are called isomorphisms.

Isomorphisms may have special, interesting properties:

▪ They may preserve angles. (Examples: scaling and rotation)

▪ They may preserve lengths. (Example: rotation)

▪ They may preserve handedness.
(Example: rotation. Right-hand coordinate frame is preserved, etc.)

A special set of isomorphisms which fulfills all of the above criteria is the
rotation group (or special orthogonal group) SO(3).

Robotics I: Introduction to Robotics | Chapter 123

The Rotation Group SO(3)

SO(3) contains all possible rotations around arbitrary axes through the origin

SO(3) is non-abelian (not commutative), i.e.

𝐀 ⋅ 𝐁 ⋅ 𝐱 ≠ 𝐁 ⋅ 𝐀 ⋅ 𝐱, 𝐱 ∈ ℝ3, 𝐀, 𝐁 ∈ 𝑆𝑂3.

Why are SO(3) and S𝐸(3) interesting for robotics?

Using SO(3) and S𝐸(3), an object‘s pose (i.e. position and orientation) in space
as well as transformations between two robot joint axes can be represented as a
combination of a translation and a rotation:

𝜙 ⋅ :ℝ3 → ℝ3, 𝜙 𝐱 = 𝐭 + 𝐑 ⋅ 𝐱, 𝐱, 𝐭 ∈ ℝ3, 𝑹 ∈ 𝑆𝑂3.

The map 𝜙(⋅) is not linear! It is called affine.

Robotics I: Introduction to Robotics | Chapter 124

Transformation between two Robot Joints

Robotics I: Introduction to Robotics | Chapter 125

Rotations in 2D (1)

Rotation in the 𝑥𝑦-plane around 0, 0 is a linear transformation.
Rotation of angle 𝜃 around 0, 0 transforms …

Vector 1,0 𝑇 to cos𝛼 , sin 𝛼 𝑇

Vector 0,1 𝑇 to −sin 𝛼 , cos𝛼 𝑇

Rotation matrix

𝐑𝜃 𝐱 =
cos 𝜃 −sin 𝜃
sin 𝜃 cos 𝜃

∙ 𝐱

with 𝐑𝐑T = 𝐑T𝐑 = 𝐈, det 𝐑 = 1

𝛼
𝛼

𝑥

𝑦

𝒗1 = 1,0 𝑇

𝒗2 = 0,1 𝑇

𝒗1′ = cos𝛼 , sin 𝛼 𝑇
𝒗2′ = −sin𝛼 , cos𝛼 𝑇

Robotics I: Introduction to Robotics | Chapter 126

Rotations in 2D (2)

Rotation around a point 𝐜 ≠ 0, 0 is not a linear transformation.
It transforms 0, 0 to a point other than 0,0 .

Rotation around an arbitrary rotation center 𝑐:
▪ We shift the plane by −𝐜 such that the rotation center will be 0, 0 .

▪ Then we perform a rotation around 0, 0 .

▪ Then we shift back the plane by +𝐜.

𝐑𝑐,𝜃 𝐱 = 𝐑𝜃 𝐱 − 𝑐 + 𝐜 = 𝐑𝜃 𝐱 + (−𝐑𝜃 𝐜 + 𝐜)

Robotics I: Introduction to Robotics | Chapter 127

Affine Transformation

𝐑𝑐,𝜃 𝐱 = 𝐑𝜃 𝐱 − 𝑐 + 𝐜 = 𝐑𝜃 𝐱 + (−𝐑𝜃 𝐜 + 𝐜)

𝐑𝑐,𝜃 is a non-linear transformation. It differs from 𝑅𝜃 only in the addition of a
constant.

Transformations (like 𝐑𝑐,𝜃) of the form

𝐓 𝒙 = 𝐀 𝒙 + 𝐛

are called affine transformations.

Robotics I: Introduction to Robotics | Chapter 128

Rotations in 3D

2D rotation in 𝑥𝑦-plane is a rotation in 3D around the 𝑧-axis.

Rotation of points around 𝑧 does not depend on their 𝑧 values and points on
the 𝑧-axis are not affected by this rotation.

The rotation matrix around the 𝑧-axis takes a simple form:
▪ The submatrix corresponding to 𝑥𝑦 is identical to the 2D case,

▪ the value multiplying the 𝑧-value is 1,

▪ The entries corresponding to the influence of 𝑧 (of the rotated vector)
on its 𝑥 and 𝑦 and vice versa are zero

𝐑𝑧,𝜃 =
cos 𝜃 −sin 𝜃 0
sin 𝜃 cos 𝜃 0
0 0 1

Robotics I: Introduction to Robotics | Chapter 129

Rotations in 3D

𝐑𝑧,𝜃 =
cos 𝜃 −sin 𝜃 0
sin 𝜃 cos 𝜃 0
0 0 1

𝐑𝑥,𝜃 =
1 0 0
0 cos 𝜃 − sin 𝜃
0 sin 𝜃 cos 𝜃

𝐑𝑦,𝜃 =
cos 𝜃 0 sin 𝜃
0 1 0

− sin 𝜃 0 cos 𝜃

Robotics I: Introduction to Robotics | Chapter 130

Inverse of a Rotation Matrix

𝐑𝑥,𝜃
−1 = 𝐑𝑥,−𝜃 =

1 0 0
0 cos(−𝜃) −sin(−𝜃)
0 sin(−𝜃) cos(−𝜃)

=
1 0 0
0 cos𝜃 sin𝜃
0 −sin𝜃 cos𝜃

= 𝐑𝑥,𝜃
𝑇

𝐑𝑥,𝜃
−1 = 𝐑𝑥,𝜃

𝑇

Note:
This is the defining property for all orthogonal matrices.

(Rotation matrices 𝐑 additionally have det 𝐑 = 1.)

The inverse of a rotation matrix is its transpose:

Robotics I: Introduction to Robotics | Chapter 131

Concatenation of Rotations

The concatenation of rotations

𝜙𝑧,𝜃3(𝜙𝑦,𝜃2(𝜙𝑥,𝜃1(𝐚))), 𝐚 ∈ ℝ3

Important: there are two ways to interpret the above concatenation
▪ Left to right: With each rotation, the unit vectors change; rotations are performed

around local axes.

𝑅𝑧,𝜃3 ⋅ 𝑅𝑦ʹ,𝜃2 ⋅ 𝑅𝑥ʹʹ,𝜃1 ⋅ 𝐚 = 𝑅𝑧,𝜃3 ⋅ 𝑅𝑦ʹ,𝜃2 ⋅ 𝑅𝑥ʹʹ,𝜃1 ⋅ 𝐚

▪ Right to left: Rotations are performed around global axes (which do not change).

𝑅𝑧,𝜃3 ⋅ 𝑅𝑦,𝜃2 ⋅ 𝑅𝑥,𝜃1 ⋅ 𝐚 = 𝑅𝑧,𝜃3 ⋅ 𝑅𝑦,𝜃2 ⋅ 𝑅𝑥,𝜃1 ⋅ 𝐚

Robotics I: Introduction to Robotics | Chapter 132

Example: Concatenation of Rotations (1)

Concatenation of the following rotations:

▪ Rotation around 𝑦-axis: −90° −
𝜋

2

▪ Rotation around 𝑧-axis: 180° (𝜋)

𝑦

𝑧

𝑥

−90° 𝑧′

𝑥′

𝑦′
180°

𝑧′′

𝑥′′

𝑦′′

𝑅𝐲 −
𝜋

2
=

cos −
𝜋

2
0 sin −

𝜋

2

0 1 0

−sin −
𝜋

2
0 cos −

𝜋

2

=
0 0 −1
0 1 0
1 0 0

𝑅𝐳 𝜋 =
cos(𝜋) −sin(𝜋) 0
sin(𝜋) cos(𝜋) 0
0 0 1

=
−1 0 0
0 −1 0
0 0 1

𝑅𝑦 −
𝜋

2
𝑅𝑧 𝜋

Robotics I: Introduction to Robotics | Chapter 133

Example: Concatenation of Rotations (2)

Calculation of the rotation matrix

Transformation of a vector

From left to right:
The unit vectors change with
each rotation. Rotations
around local axes.

𝑅 = 𝑅𝑦 −
𝜋

2
⋅ 𝑅𝑧 𝜋 =

0 0 −1
0 −1 0
−1 0 0

𝐩′′ =
0 0 −1
0 −1 0
−1 0 0

∙ 𝐩 =
0 0 −1
0 −1 0
−1 0 0

⋅

𝑝1
𝑝2
𝑝3

=

−𝑝3
−𝑝2
−𝑝1

𝑦

𝑧

𝑥

−90° 𝑧′

𝑥′

𝑦′
180°

𝑧′′

𝑥′′

𝑦′′
𝑅𝑦 −

𝜋

2
𝑅𝑧 𝜋

Robotics I: Introduction to Robotics | Chapter 134

Problems with Rotation Matrices

Rotation matrices have a number of drawbacks:

▪ Redundancy: nine values for one rotation matrix

▪ In machine learning: If the entries of a rotation matrix are predicted
independently, it is likely that the resulting matrix is not a valid rotation
matrix! (more on that later…)

How to deal with these problems?

▪ Use other representation for rotations, e.g. Euler angles.

▪ Orthonormalize the matrix.

Robotics I: Introduction to Robotics | Chapter 135

Euler Angles

𝑅𝑧,𝛼 𝑅𝑥ʹ,𝛽 𝑅𝑧",𝛾 =

cos 𝛾 ⋅ cos 𝛼 − sin 𝛾 ⋅ cos 𝛽 ⋅ sin 𝛼 −sin 𝛾 ⋅ cos 𝛼 − cos 𝛾 ⋅ cos 𝛽 ⋅ sin 𝛼 sin 𝛽 ⋅ sin 𝛼
cos 𝛾 ⋅ sin 𝛼 + sin 𝛾 ⋅ cos 𝛽 ⋅ cos 𝛼 −sin 𝛾 ⋅ sin 𝛼 + cos 𝛾 ⋅ cos 𝛽 ⋅ cos 𝛼 −sin 𝛽 ⋅ cos 𝛼

sin 𝛾 ⋅ sin 𝛽 cos 𝛾 ⋅ sin 𝛽 cos 𝛽

It is possible to represent every thinkable rotation by three rotations around
three coordinate axes.

The axes can be chosen arbitrarily, but due to historic reasons,
a very common convention is the so-called Euler 𝒛 𝒙ʹ𝒛ʺ convention.

The angles 𝛼, 𝛽 and 𝛾 are the Euler angles. They describe the rotation matrix

Robotics I: Introduction to Robotics | Chapter 136

Euler Angles 𝒛 𝒙ʹ 𝒛ʺ

Sequence of rotations:

1. Rotation by 𝛼 around the 𝑧-axis 𝐳 𝑅𝐳

2. Rotation by 𝛽 around the 𝑥-axis 𝐱′ 𝑅𝐱’

3. Rotation by 𝛾 around the 𝑧-axis 𝐳′′ 𝑅𝐳’’

Important: Rotation around different axes!

1 𝑧

𝑦

𝑥

𝑧′

𝑦′

𝑥′

𝑧′′
𝑅𝐳 𝑅𝐱’ 𝑅𝐳’’

𝑥′′

𝑦′′ 𝑥

𝑦

𝑧

2 3 4

𝑅𝒔 = 𝑅𝒛 𝑅𝒙′𝑅𝒛′′

Robotics I: Introduction to Robotics | Chapter 137

Euler Angles

12 possible sequences of rotation axis
𝑧𝑥𝑧, 𝑥𝑦𝑥, 𝑦𝑧𝑦, 𝑧𝑦𝑧, 𝑥𝑧𝑥, 𝑦𝑥𝑦

𝑥𝑦𝑧, 𝑦𝑧𝑥, 𝑧𝑥𝑦, 𝑥𝑧𝑦, 𝑧𝑦𝑥, 𝑦𝑥𝑧

Rotations around local or fixed axis
⇒ in total 24 possible rotation

Source: Wikipedia

Robotics I: Introduction to Robotics | Chapter 138

Roll, Pitch und Yaw

Another common convention is Euler convention 𝐱, 𝐲, 𝐳

These special Euler angles are called Roll, Pitch, Yaw

Order of rotations:

1. Global 𝑥-axis around 𝛼 (Roll)

2. Global 𝑦-axis around 𝛽 (Pitch)

3. Global 𝑧-axis around 𝛾 (Yaw)

by NASA [Public domain], via wikimedia Commons

Robotics I: Introduction to Robotics | Chapter 139

Euler Angles (III)

Advantages of Euler angles:
▪ More compact than rotation matrices

▪ More descriptive than rotation matrices

Disadvantages of Euler angles:
▪ Not unique:

o Example: in Euler 𝑧, 𝑥ʹ, 𝑧ʺ convention, Euler angles (45∘, 30∘, −45∘) and (0∘, 30∘, −0∘)
result in the same rotation! This is called Gimbal Lock.

▪ Not continuous:

o Euler angles of a continuous rotation are not continuous.

o Small changes in the orientation may lead to large changes in the Euler angles (next slide).

o Consequence: smooth interpolation between two Euler angles is not possible

Robotics I: Introduction to Robotics | Chapter 140

Euler Angles: Interpolation Problem

𝛼 𝛽 𝛾

Not continuous:
o Euler angles of a continuous rotation are not continuous.

o Small changes in the orientation may lead to huge changes in the Euler angles

o Consequence: smooth interpolation between two Euler angles is not possible

Robotics I: Introduction to Robotics | Chapter 141

Euler Angles – Gimbal Lock (1)

12 different sequences are possible for the rotation matrices:

▪ 𝑧𝑥𝑧 𝑥𝑦𝑥 𝑦𝑧𝑦 𝑧𝑦𝑧 𝑥𝑧𝑥 𝑦𝑥𝑦

▪ 𝑥𝑦𝑧 𝑦𝑧𝑥 𝑧𝑥𝑦 𝑥𝑧𝑦 𝑧𝑦𝑥 𝑦𝑥𝑧

Rotation sequence 𝑥𝑦𝑧 (Roll-Pitch-Yaw):

𝑅𝐲,𝛽 =
cos𝛽 0 sin 𝛽
0 1 0

− sin 𝛽 0 cos 𝛽

𝑅𝐱,𝛼 =
1 0 0
0 cos𝛼 − sin 𝛼
0 sin 𝛼 cos 𝛼

𝑅𝐳,𝛾 =
cos 𝛾 − sin 𝛾 0
sin 𝛾 cos 𝛾 0
0 0 1

by NASA
[Public domain], via
Wikimedia Commons

Robotics I: Introduction to Robotics | Chapter 142

Euler Angles – Gimbal Lock (2)

Assumption: 𝛽 = −
𝝅

𝟐

sin −
𝜋

2
= −1, cos −

𝜋

2
= 0

Multiplication of the matrices :

𝑅
𝐲, 𝛽=−

𝜋
2
=

0 0 −1
0 1 0
1 0 0

𝑅 = 𝑅𝑧,𝛾 ⋅ 𝑅𝑦, 𝛽=−𝜋
2
⋅ 𝑅𝑥,𝛼 =

0 −sin 𝛾 − cos 𝛾
0 cos 𝛾 − sin 𝛾
1 0 0

1 0 0
0 cos𝛼 − sin 𝛼
0 sin 𝛼 cos𝛼

=
0 − sin 𝛾 cos𝛼 − cos 𝛾 sin 𝛼 sin 𝛾 sin 𝛼 − cos 𝛾 cos𝛼
0 cos 𝛾 cos 𝛼 − sin 𝛾 sin 𝛼 − cos 𝛾 sin 𝛼 − sin 𝛾 cos𝛼
1 0 0

=
0 −sin(𝛼 + 𝛾) − cos(𝛼 + 𝛾)
0 cos(𝛼 + 𝛾) − sin(𝛼 + 𝛾)
1 0 0

Common rotation axis for rotation around 𝛼 and 𝛾→ 1 DoF is lost
Changes to 𝛼 and 𝛾 currently have the same effect

Robotics I: Introduction to Robotics | Chapter 143

Euler Angles – Gimbal Lock (3)

Gimbal (cardanic bearing) allows rotation around
a predetermined axis

▪ Combination of 3 elements to allow free movement

▪ Measuring instruments such as gyroscope, compass

Gimbal Lock

▪ At certain angles, two axes become
dependent on each other

▪ One degree of freedom is lost
(→ no instantaneous speed possible in this
degree of freedom)

3 DoF 2 DoF
by MathsPoetry
[CC BY-SA 3.0], via
Wikimedia Commons

by Bautsch
[Public domain], via
Wikimedia Commons

Robotics I: Introduction to Robotics | Chapter 144

Rotation Matrices vs. Euler Angles

Rotation matrices

▪ “Natural” representation from the
perspective of linear algebra

▪ Unambiguous, continuous

▪ Redundancy through 9 values

Euler angles

▪ More compact

▪ More meaningful

▪ Not unambiguous

▪ Gimbal Lock

▪ Not continuous

Robotics I: Introduction to Robotics | Chapter 145

Euler Angles vs. Roll-Pitch-Yaw

Euler angles (𝒛, 𝒙′, 𝒛′′)

▪ Multiplication from left to right
Rs = 𝑅𝐳,𝛼 𝑅𝐱′,𝛽 𝑅𝐳′′,𝛾

▪ Each rotation is local (refers to the new
coordinate system)

▪ Rotation around different axes

Roll-Pitch-Yaw (𝒙, 𝒚, 𝒛)

▪ Multiplication from right to left
Rs = 𝑅𝐳,𝛾 𝑅𝐲,𝛽 𝑅𝐱,𝛼

▪ Each rotation is global (refers to the
global coordinate system)

▪ Rotation around fixed axes

Robotics I: Introduction to Robotics | Chapter 146

Representation of orientation with 3 × 3 matrices

Assessment:

Advantage: Vector and rotation matrix are descriptive and therefore a common way to
represent poses (e.g. object and end effector pose)

Disadvantage: Vector and matrix operations must be performed separately :

(𝐩, 𝑅) with 𝐩 ∈ ℝ3 and 𝑅 ∈ SO 3 ⊂ ℝ3×3

Goal: Closed representation of rotation and translation in a matrix

→ Use of affine transformations (projective geometry)

Robotics I: Introduction to Robotics | Chapter 147

An affine space is an extension of the Euclidean space.

It contains points and vectors expressed in extended (or homogeneous) coordinates:

𝐚 = (𝑎𝑥, 𝑎𝑦 , 𝑎𝑧, ℎ)
𝑇 , 𝐚 ∈ ℝ𝟒, ℎ ∈ 0,1

Affine Transformations (I)

ℎ = 1 for positions
ℎ = 0 for directions

Robotics I: Introduction to Robotics | Chapter 148

Affine transformations can be defined such that linear transformations in the Euclidean
space (e.g., rotation, scaling and shear around the origin) can be combined with
translations and be expressed in homogeneous coordinates:

𝐛 = 𝐀𝐱 + 𝐭

𝐛 =
𝐛
1

=
𝐀 𝐨
𝐨𝑇 1

𝐱
1

+
𝐭
0

=
𝐀 𝐭
𝐨𝑇 1

𝐱
1

𝐨 represents the null vector

Affine Transformations (I)

𝒃, 𝒙, 𝒕, 𝐨 ∈ ℝ3 𝐀 ∈ ℝ3×3 𝐀 𝐭
𝐨𝑇 1

∈ ℝ𝟒×𝟒

Robotics I: Introduction to Robotics | Chapter 149

Affine Transformations: Advantages

It is possible to formulate rotations around arbitrary axes in affine space.

Rotations and translations can be combine in a single homogeneous
𝟒 × 𝟒 matrix.

This means that rotations and translations can be handled uniformly.

Robotics I: Introduction to Robotics | Chapter 150

Coordinate systems, also called frames:
Can be defined at various locations

▪ Basis coordinate system (BCS):
Reference system, e.g.,
in the robot’s base or as a
“world” coordinate system

▪ End effector coordinate system (ECS):
Attached to an end effector

▪ Object coordinate system (OCS):
Attached to an object

Coordinate Systems (Frames)

BCS

ECS OCS

Robotics I: Introduction to Robotics | Chapter 151

Homogeneous 𝟒 × 𝟒 −Matrix (1)

Homogeneous 4 × 4 Matrix

Translation matrix: Translation of object coordinate systems (OCS) to

𝑡𝑥, 𝑡𝑦, 𝑡𝑧
𝑇

in the basis coordinate system (BCS)

𝑇 =
𝐴 𝐭
𝐨𝑇 1

𝑇 ∈ 𝑆𝐸 3 with 𝒕 ∈ ℝ3 and 𝐴 ∈ 𝑆𝑂(3)

𝑇𝑡𝑟𝑎𝑛𝑠 =

1 0 0 𝑡𝑥
0 1 0 𝑡𝑦
0 0 1 𝑡𝑧
0 0 0 1

Robotics I: Introduction to Robotics | Chapter 152

Homogeneous 𝟒 × 𝟒 −Matrix (2)

Basic rotation matrices :

𝑇𝑥,𝛼 =

1 0 0 0
0 cos𝛼 −sin 𝛼 0
0 sin 𝛼 cos 𝛼 0
0 0 0 1

𝑇𝑦,𝛽 =

cos 𝛽 0 sin 𝛽 0
0 1 0 0

− sin 𝛽 0 cos𝛽 0
0 0 0 1

𝑇𝑧,𝛾 =

cos 𝛾 − sin 𝛾 0 0
sin 𝛾 cos 𝛾 0 0
0 0 1 0
0 0 0 1

Robotics I: Introduction to Robotics | Chapter 153

Example: Homogeneous Matrices

Two points 𝑎 and 𝑏 should be translated by +5 units in 𝑥 and by −3 units in 𝑧

𝐚 = 4, 3, 2, 1 ⊤ 𝐛 = 6, 2, 4, 1 ⊤

𝐚′ = 𝐴 ∙ 𝐚 =

1 0 0 +5
0 1 0 0
0 0 1 −3
0 0 0 1

∙

4
3
2
1

=

9
3
−1
1

𝐛′ = 𝐴 ∙ 𝐛 =

1 0 0 +5
0 1 0 0
0 0 1 −3
0 0 0 1

∙

6
2
4
1

=

11
2
1
1

Robotics I: Introduction to Robotics | Chapter 154

Homogeneous 𝟒 × 𝟒 Matrices: Inversion

𝐛 = 𝑅 ⋅ 𝐱 + 𝐭 ⇔
𝐛
1

= 𝑇 ⋅
𝐱
1

=
𝑅 𝐭
𝟎⊤ 1

⋅
𝐱
1

1. Rotate 𝐱 by 𝑅

2. Shift the result by 𝐭 (in the rotated coordinate system)

We are looking for the homogeneous matrix 𝑇−1, which maps 𝐛 back to 𝐱:

𝑅 ⋅ 𝐱 + 𝐭 = 𝐛

𝑅 ⋅ 𝐱 = 𝐛 − 𝐭

𝐱 = 𝑅−1 ⋅ 𝐛 − 𝐭

𝐱 = 𝑅−1 ⋅ 𝐛 − 𝑅−1 ⋅ 𝐭

𝐱 = 𝑅−1 ⋅ 𝐛 + −𝑅−1 ⋅ 𝐭

𝐱 = 𝑅⊤ ⋅ 𝐛 + −𝑅⊤ ⋅ 𝐭
𝑇−1 = 𝑅⊤ −𝑅⊤ ⋅ 𝐭

𝟎⊤ 1

𝐱
1

= 𝑇−1 ⋅
𝐛
1

Robotics I: Introduction to Robotics | Chapter 155

Homogeneous 𝟒 × 𝟒 −Matrices

Transformation of vector 𝑝𝑂𝐾𝑆 (in OCS) into BCS:

𝑝𝐵𝐶𝑆 = 𝑇 ⋅ 𝑝𝑂𝐶𝑆

mit: 𝑇 =

𝑛𝑥 𝑜𝑥 𝑎𝑥 𝑢𝑥
𝑛𝑦 𝑜𝑦 𝑎𝑦 𝑢𝑦
𝑛𝑧 𝑜𝑧 𝑎𝑧 𝑢𝑧
0 0 0 1

=
𝒏 𝒐 𝒂 𝒖
0 0 0 1

u: Origin of OCS
n, o, a: Unit vectors of OCS in relation to BCS

𝒂

𝒐

𝒏

n normal

a approach

o orientation

Robotics I: Introduction to Robotics | Chapter 156

Homogeneous 𝟒 × 𝟒 −Matrices

Inversion:

𝑇 =
𝐧 𝐨 𝐚 𝐮
0 0 0 1

=

𝑛𝑥 𝑜𝑥 𝑎𝑥 𝑢𝑥
𝑛𝑦 𝑜𝑦 𝑎𝑦 𝑢𝑦
𝑛𝑧 𝑜𝑧 𝑎𝑧 𝑢𝑧
0 0 0 1

𝑇−1 = 𝑅⊤ −𝑅⊤𝐮

0 0 0 1

=

𝑛𝑥 𝑛𝑦 𝑛𝑧 −𝐧⊤𝐮

𝑜𝑥 𝑜𝑦 𝑜𝑧 −𝐨⊤𝐮

𝑎𝑥 𝑎𝑦 𝑎𝑧 −𝐚⊤𝐮

0 0 0 1

Robotics I: Introduction to Robotics | Chapter 157

Homogeneous 𝟒 × 𝟒 −Matrices

A homogeneous 4×4 matrix contains 12 (𝐧,𝒐,𝐚,𝐮) n
on-trivial variables as opposed to 6 (𝑥, 𝑦, 𝑧, 𝛼, 𝛽, 𝛾) necessary

Redundancy, but with additional boundary conditions that guarantee
orthogonality (𝑅 ⋅ 𝑅⊤ = 𝐼)

Axes of rotation and rotation sequence are implicitly included

Robotics I: Introduction to Robotics | Chapter 158

Comparison: Cartesian and Homogeneous Representation

In Cartesian coordinates:

𝑥′
𝑦′

𝑧′

=

𝑛𝑥 𝑜𝑥 𝑎𝑥
𝑛𝑦 𝑜𝑦 𝑎𝑦
𝑛𝑧 𝑜𝑧 𝑎𝑧

⋅
𝑥
𝑦
𝑧

+

𝑡𝑥
𝑡𝑦
𝑡𝑧

In homogeneous coordinates:

𝑥′
𝑦′

𝑧′
1

=

𝑛𝑥 𝑜𝑥 𝑎𝑥 𝑡𝑥
𝑛𝑦 𝑜𝑦 𝑎𝑦 𝑡𝑦
𝑛𝑧 𝑜𝑧 𝑎𝑧 𝑡𝑧
0 0 0 1

⋅

𝑥
𝑦
𝑧
1

Robotics I: Introduction to Robotics | Chapter 159

Interpretation of Homogeneous 4 × 4 Matrices

Pose description of a coordinate system:

𝐴𝑃𝐵 describes the position (pose) of the coordinate system B
relative to the coordinate system A

Transformation mapping (between coordinate systems):

𝐴𝑇𝐵:
𝐵𝑃 → 𝐴𝑃, 𝐴𝑃 = 𝐴𝑇𝐵 ⋅

𝐵𝑃

Transformation operator (within a coordinate system):

𝑇: 𝐴𝑃1 →
𝐴𝑃2,

𝐴𝑃2 = 𝑇 ⋅ 𝐴𝑃1

Robotics I: Introduction to Robotics | Chapter 160

Given: Point in the end effector coordinate system (ECS)
ECS𝐩 = 0,−3, 5 ⊤

Requested: Point in the base coordinate system (BCS) BCS𝐩

Example: Coordinate System Transformation (1)

𝐮 =
−7
0
8

𝑅 =
0 0 1
1 0 0
0 1 0

BCS

𝑦

𝑧
ECS

𝑧

𝑥

𝑦

𝐮

𝑥

Robotics I: Introduction to Robotics | Chapter 161

Example: Coordinate System Transformation (2)

BCS𝐩 =

0 0 1 −7
1 0 0 0
0 1 0 8
0 0 0 1

0
−3
5
1

=

−2
0
5
1

𝑅 =
0 0 1
1 0 0
0 1 0

𝐮 =
−7
0
8

Given: Point in the end effector coordinate system (ECS)
ECS𝐩 = 0,−3, 5 ⊤

Requested: Point in the base coordinate system (BCS) BCS𝐩

Robotics I: Introduction to Robotics | Chapter 162

Composition of Transformations (1)

Given

BCS𝑇𝐴 pose of object 𝐴 in BCS

𝐴𝑇𝐵 pose of object 𝐵 relative to OCS of 𝐴

BCS𝑇𝐵 pose of object 𝐵 relative to BCS

→ BCS𝑇𝐵 = BCS𝑇𝐴 ⋅
𝐴𝑇𝐵

More compact notation compared to Cartesian representation:

𝑅𝐵𝑛𝑒𝑢 + 𝐭𝐵𝑛𝑒𝑢 = 𝑅𝐴 ⋅ 𝑅𝐵 + 𝐭𝐵 + 𝐭𝐴 = 𝑅𝐴 ⋅ 𝑅𝐵 + (𝑅𝐴 ⋅ 𝐭𝐵 + 𝐭𝐴)

Robotics I: Introduction to Robotics | Chapter 163

Composition of Transformations (1)

▪ Pose of object 1 in BCS: BCS𝑇𝑂1

▪ Pose of object 2 relative to object 1 :
𝑂1𝑇𝑂2

▪ Pose of object 3 relative to object 2 :
𝑂2𝑇𝑂3

▪ Pose of object 3 relative to BCS BCS𝑇𝑂3

BCS𝑇𝑂3 =
BCS𝑇𝑂1 ⋅

𝑂1𝑇𝑂2 ⋅
𝑂2𝑇𝑂3

In representations using product of matrices, each matrix must refer to the position defined by
the matrix on the left:

𝐴0𝑇𝐴𝑛 =ෑ

𝑖=1

𝑛

𝐴𝑖−1𝑇𝐴𝑖 with 𝐴0 = BCS

Robotics I: Introduction to Robotics | Chapter 164

Example

𝐁𝐂𝐒𝑯𝐜𝐮𝐩 = 𝐁𝐂𝐒𝑯𝐛𝐨𝐭𝐭𝐥𝐞 ⋅
𝒃𝒐𝒕𝒕𝒍𝒆𝑯𝐜𝐮𝐩

Robotics I: Introduction to Robotics | Chapter 165

Problems with Rotation Matrices and Euler Angles ?

Problems with rotation matrices

▪ Highly redundant

▪ Computationally intensive (matrix multiplication)

▪ Interpolation difficult

Problems with Euler angles:

▪ Singularities (discontinuous)

Are there other representations for rotations which avoid these problems?

Robotics I: Introduction to Robotics | Chapter 166

Quaternions to Represent Orientations

Are there other representations for rotations which avoid these problems?

Answer: Yes, Quaternions!
▪ Quaternions are a extension of complex numbers (”hypercomplex numbers“)

▪ Introduced 1843 by William Rowan Hamilton

▪ Used in robotics and computer graphics

▪ See Horn 1987 for an overview

Berthold K. P. Horn, Closed-Form Solution of Absolute Orientation Using Unit Quaternions, Journal
of the Optical Society of America A 4(4):629-642; April 1987, DOI: 10.1364/JOSAA.4.000629

https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1364%2FJOSAA.4.000629?_sg%5B0%5D=Dlc0FD5Jpc4HPj51DuqBiRElMmSr_BRhUBB2xnA5PckdmjObd_6dCdVSKww_3eI7JTEijWARcUN96lHJQGW8IepSVA.VOs6gmyWQEghEH9hDasBZpp7XN-p0ZVmSvPSsvWG3_Kd7G0s0RGf8zZIsgljKKn6nnIJCub3y0FmNfmWOb_l6w

Robotics I: Introduction to Robotics | Chapter 167

Quaternions

Broome Bridge in Dublin

Robotics I: Introduction to Robotics | Chapter 168

Quaternions: Definition

The set of quaternions ℍ is defined by

ℍ = ℂ + ℂ 𝑗 with 𝑗2 = −1 and 𝑖 ⋅ 𝑗 = −𝑗 ⋅ 𝑖 = 𝑘

An element 𝐪 ∈ ℍ has the following form

▪ 𝑎 is referred to as the real part

▪ 𝐮 = 𝑢1, 𝑢2, 𝑢3
⊤ is referred to as the imaginary part

In code, common notations are 𝑤, 𝑥, 𝑦, 𝑧 or 𝑥, 𝑦, 𝑧, 𝑤 with 𝑤 = 𝑎 and 𝑥, 𝑦, 𝑧 = 𝐮

𝐪 = 𝑎, 𝐮 ⊤ = 𝑎 + 𝑢1𝑖 + 𝑢2𝑗 + 𝑢3𝑘 with 𝑎 ∈ ℝ, 𝐮 ∈ ℝ3 and 𝑘 = 𝑖 ⋅ 𝑗

Robotics I: Introduction to Robotics | Chapter 169

Formula for Quaternions (1)

𝒒 = 𝑎, 𝒖 ⊤ = 𝑎 + 𝑢1𝑖 + 𝑢2𝑗 + 𝑢3𝑘

⋅ 𝟏 𝒊 𝒋 𝒌

𝟏 1 𝑖 𝑗 𝑘

𝒊 𝑖 −1 𝑘 −𝑗

𝒋 𝑗 −𝑘 −1 𝑖

𝒌 𝑘 𝑗 −𝑖 −1

𝑖2 = 𝑗2 = 𝑘2 = 𝑖 ⋅ 𝑗 ⋅ 𝑘 = −1
𝑖 ⋅ 𝑗 = −𝑗 ⋅ 𝑖 = 𝑘
𝑘 ⋅ 𝑖 = −𝑖 ⋅ 𝑘 = 𝑗

(not commutative!)

Robotics I: Introduction to Robotics | Chapter 170

Formula for Quaternions (2)

Given two quaternions 𝐪, 𝐫:

𝐪 = 𝑎, 𝐮 ⊤, 𝐫 = 𝑏, 𝐯 ⊤

Addition:
𝐪 + 𝐫 = 𝑎 + 𝑏, 𝐮 + 𝐯 ⊤

Scalar product:

𝐪 𝐫 = 𝑎 ⋅ 𝑏 + 𝐯 𝐮 = 𝑎 ⋅ 𝑏 + 𝑣1 ⋅ 𝑢1 + 𝑣2 ⋅ 𝑢2 + 𝑣3 ⋅ 𝑢3

Multiplication:

𝐪 ⋅ 𝐫 = 𝑎 + 𝑢1𝑖 + 𝑢2𝑗 + 𝑢3𝑘 ⋅ 𝑏 + 𝑣1𝑖 + 𝑣2𝑗 + 𝑣3𝑘

Robotics I: Introduction to Robotics | Chapter 171

Formula for Quaternions (3)

Quaternion:
𝐪 = 𝑎, 𝐮 ⊤

Conjugated quaternion:
𝐪∗ = 𝑎,−𝐮 ⊤

Norm of a quaternion:

𝐪 = 𝐪 ⋅ 𝐪∗ = 𝐪∗ ⋅ 𝐪 = 𝑎2 + 𝑢1
2 + 𝑢2

2 + 𝑢3
2

Inverse of a quaternion:

𝐪−1 =
𝐪∗

𝐪 2

Robotics I: Introduction to Robotics | Chapter 172

Quaternions: Rotations (1)

Unit quaternions 𝕊3 = 𝐪 ∈ ℍ 𝐪 2 = 1}

Exist on the unit sphere 𝕊3 in 4D
▪ Norm = 1

⇒ 1 of 4 „degrees of freedom“ defined

⇒ 3 „ degrees of freedom“ remaining

Form a group
▪ Group properties (reminder):

o Associative law

o Existence of an inverse element for each group element

o Existence of an identity

Define rotations There is an embedding from SO 3 ⊂ ℝ3 to ℍ

Unit sphere 𝕊2 in 3D

Unit sphere 𝕊3 in 4D

(?)

Robotics I: Introduction to Robotics | Chapter 173

Quaternions: Rotations (2)

Question: How do you represent a rotation of, e.g., 46° around the axis 0,1,0 ⊤

as a quaternion?

vector 𝐩 ∈ ℝ3 as a quaternion 𝐪:

𝐩 = (𝑥, 𝑦, 𝑧)⊤ ⟹ 𝐪 = 0, 𝐩 ⊤

scalars 𝑠 ∈ ℝ as a quaternion 𝐪:

𝐪 = 𝑠, 𝟎 ⊤

Robotics I: Introduction to Robotics | Chapter 174

Quaternions: Rotations (3)

A rotation described by a rotation axis 𝐚 with unit length and an angle 𝜙 can
be represented by a quaternion:

Applying the rotation 𝐪 to a point 𝐩:

𝐯′ = 𝐪 ⋅ 𝐯 ⋅ 𝐪−1 with 𝐯 = 0, 𝐩 T

As 𝐪 is a unit quaternion, we have 𝐪−1 = 𝐪∗, and therefore:

𝐯′ = 𝐪 ⋅ 𝐯 ⋅ 𝐪∗

𝐪 = cos
𝜙

2
, 𝐚 ⋅ sin

𝜙

2

Robotics I: Introduction to Robotics | Chapter 175

Quaternions: Rotations (4)

Concatenation of rotations of a vector 𝐯 with two quaternions 𝐪 and 𝐫:

𝐪 = cos
ϕq

2
, 𝐮𝐪 ⋅ sin

ϕq

2
, 𝐫 = cos

ϕr

2
, 𝐮𝐫 ⋅ sin

ϕr

2

Rotation with one quaternion:

f 𝐯 = 𝐪 ⋅ 𝐯 ⋅ 𝐪∗, h 𝐯 = 𝐫 ⋅ 𝐯 ⋅ 𝐫∗

Then f ∘ h describes the rotation by the quaternion 𝐩 = 𝐪 ∙ 𝐫

f ∘ h v = f(h v) = 𝐪 ⋅ (𝐫 ⋅ 𝐯 ⋅ 𝐫∗) ⋅ 𝐪∗

𝑓 ∘ ℎ corresponds to the rotation with the quaternion 𝐬 = 𝐪 ∙ 𝐫
⇒ concatenation ෝ= multiplication

Robotics I: Introduction to Robotics | Chapter 176

Quaternions: Example

Rotation of the point 𝐩 = (1, 0, 9)⊤

about the axis of rotation 𝐚 = (1, 0, 0)⊤

with angles 𝜃 = 90°

Robotics I: Introduction to Robotics | Chapter 177

Quaternions: Example

Example: Rotation of the point 𝐩 = (1, 0, 9)⊤

about the axis of rotation 𝐚 = (1, 0, 0)⊤

with angles 𝜃 = 90°

1. Representation of 𝐩 as quaternion 𝐯 𝐯 = 0 + 1𝑖 + 0𝑗 + 9𝑘

2. Rotation quaternion 𝐪 𝐪 = cos
𝜃

2
+ 1𝑖 ∙ sin

𝜃

2
+ 0𝑗 + 0𝑘

3. Conjugated Quaternion 𝐪∗ 𝐪∗ = cos
𝜃

2
− 1𝑖 ∙ sin

𝜃

2
− 0𝑗 − 0𝑘

4. Rotation of 𝐯 around 𝐪 𝐯r = 𝐪 𝐯 𝐪∗ → 𝐯r = 0 + 1𝑖 − 9𝑗 + 0𝑘

5. Representation as point 𝐩r 𝐩r = (1,−9, 0)⊤

Note: The multiplication of quaternions is not commutative.

Robotics I: Introduction to Robotics | Chapter 178

Representing Rotations with Quaternions

Advantages:

▪ Compact: 4 Values instead of 9 (rotation matrix)

▪ Illustrative (related to the axis/angle representation)

▪ Can be concatenated similar to rotation matrices

▪ Can be used for the calculation of the inverse kinematics (later)

▪ Unambiguous (no Gimbal lock)

▪ The representation is continuous (no jumps, see figures below)

Drawback:

▪ Only for rotations, not for translations

Robotics I: Introduction to Robotics | Chapter 179

Quaternions: Interpolation

Goal: Continuous rotation between two orientations

Problems:

▪ Euler angles are not continuous

▪ Rotation matrices have many degrees of freedom

Interpolation of quaternions using SLERP (Spherical Linear Interpolation)

Similar to linear interpolation: 𝑎 ∙ 1 − 𝑡 + 𝑏 ∙ 𝑡

𝑡 = 0 𝑡 =1

Robotics I: Introduction to Robotics | Chapter 180

Quaternions: SLERP

SLERP interpolation from 𝐪1 to 𝐪2 with the parameter 𝑡 ∈ 0, 1 :

Slerp 𝐪1, 𝐪2, 𝑡 = 𝐪𝟏 ⋅ (𝐪1
−1 ⋅ 𝐪2)

𝑡

(Powers of quaternions are not covered in the lecture)

Direct formulation of the SLERP interpolation:

Slerp 𝐪1, 𝐪2, 𝑡 =
sin 1−𝑡 ⋅𝜃

sin 𝜃
⋅ 𝐪1 +

sin 𝑡⋅𝜃

sin 𝜃
⋅ 𝐪2 with 𝐪𝟏 𝐪𝟐 = cos 𝜃

Result: Rotation with constant angular velocity

Robotics I: Introduction to Robotics | Chapter 181

Quaternions: Interpolation Problems

Problem: Orientations in SO(3) are covered twice by unit quaternions because
the unit quaternions 𝐪 and −𝐪 correspond to the same rotation.

Proof:
▪ Rotation of 𝐯 around 𝐪 correspond to rotation of 𝐯 around −𝐪.

▪ 𝐯r = 𝐪 𝐯 𝐪∗ = −𝐪 𝐯 (−𝐪)∗

▪ The negative signs cancel each other out.

SLERP therefore does not always calculate the shortest rotation
⇒ It must be checked whether the rotation from 𝐪1 to 𝐪2 or −𝐪1 to 𝐪2 is shorter

Robotics I: Introduction to Robotics | Chapter 182

Dual Quaternions (1)

Problem:

Real quaternions (as before) are suitable for describing the orientation, …

but not to describe the position of an object (translation is missing).

Idea:

Replace the 4 real values of a quaternion with dual numbers

Obtain additional translational components to express the position of an
object

→ Dual Quaternions

Robotics I: Introduction to Robotics | Chapter 183

Duals Quaternions (2): Dual Numbers

Dual numbers are of the form

𝒅 = 𝒑 + 𝜺 · 𝒔, with 𝜺𝟐 = 𝟎

Primary part 𝑝, secondary part 𝑠

Similar to complex numbers, the usual operations can be derived

If 𝑑1 = 𝑝1+ 𝜀 · 𝑠1 and 𝑑2 = 𝑝2 + 𝜀 · 𝑠2 are dual numbers, then the following
applies:

▪ Addition: 𝑑1+ 𝑑2 = 𝑝1+ 𝑝2+ 𝜀 · (𝑠1 + 𝑠2)

▪ Multiplication: 𝑑1 · 𝑑2 = 𝑝1 ⋅ 𝑝2+ 𝜀 · (𝑝1 · 𝑠2 + 𝑝2 · 𝑠1)

Robotics I: Introduction to Robotics | Chapter 184

Duale Quaternions (3)

Description

𝐷𝑄 = (𝑑1, 𝑑2, 𝑑3, 𝑑4), 𝑑𝑖 = 𝑑𝑝𝑖 + 𝜀 · 𝑑𝑠𝑖

Primary part 𝑑𝑝𝑖 contains the angle value 𝜃/2

Secondary part 𝑑𝑠𝑖 contains the translation value 𝑑/2

Robotics I: Introduction to Robotics | Chapter 185

Dual Quaternions (4)

Multiplication table for dual unit quaternions

⋅ 𝟏 𝒊 𝒋 𝒌 𝜺 𝜺𝒊 𝜺𝒋 𝜺𝒌

𝟏 1 𝑖 𝑗 𝑘 𝜀 𝜀𝑖 𝜀𝑗 𝜀𝑘

𝒊 𝑖 −1 𝑘 −𝑗 𝜀𝑖 −𝜀 𝜀𝑘 −𝜀𝑗

𝒋 𝑗 −𝑘 −1 𝑖 𝜀𝑗 −𝜀𝑘 −𝜀 𝜀𝑖

𝒌 𝑘 𝑗 −𝑖 −1 𝜀𝑘 𝜀𝑗 −𝜀𝑖 −𝜀

𝜺 𝜀 𝜀𝑖 𝜀𝑗 𝜀𝑘 0 0 0 0

𝜺𝒊 𝜀𝑖 −𝜀 𝜀𝑘 −𝜀𝑗 0 0 0 0

𝜺𝒋 𝜀𝑗 −𝜀𝑘 −𝜀 𝜀𝑖 0 0 0 0

𝜺𝒌 𝜀𝑘 𝜀𝑗 −𝜀𝑖 −𝜀 0 0 0 0

Robotics I: Introduction to Robotics | Chapter 186

Dual Quaternions (5)

Rotation around an axis 𝐚 with the 𝜃:

𝐪𝑟 = cos
𝜃

2
, 𝐚 ⋅ sin

𝜃

2
+ 𝜀 ⋅ (0, 0, 0, 0)

Translation with the vector 𝐭 = 𝑡𝑥, 𝑡𝑦 , 𝑡𝑧

𝐪𝑡 = 1, 0, 0, 0 + 𝜀 ⋅ 0,
𝑡𝑥
2
,
𝑡𝑦

2
,
𝑡𝑧
2

Combination for a transformation 𝑇:
𝒒𝑇 = 𝒒𝑡 𝒒𝑟

Robotics I: Introduction to Robotics | Chapter 187

Duale Quaternions (6)

A transformation 𝑻 with the rotational part 𝒓 and the translational part 𝒕, can
be described as a dual quaternion:

𝐪𝑇 = 𝐪𝑡 𝐪𝑟

A transformation 𝐪𝑇 is applied to a point 𝐩 (as a dual quaternion) as follows:

𝐩′ = 𝐪𝑇 𝐩 𝐪𝑇
∗, with 𝐪𝑇

∗ = (𝐪𝑡 𝐪𝑟)
∗ = 𝐪𝑟

∗𝐪𝑡
∗

Conjugate (complex and dual) from 𝐪 = 𝐩 + 𝜀 ⋅ 𝐬:

𝐪∗ = 𝐩∗ − 𝜀 ⋅ 𝐬∗

Robotics I: Introduction to Robotics | Chapter 188

Duale Quaternions: Example (1)

Example: Rotation of point 𝐩 = (3, 4, 5)⊤

around rotation axis 𝐚 = (1, 0, 0)⊤ mit 𝜃 = 180°
and translation with 𝐩𝑡 = (4, 2, 6)⊤

𝐩 as a dual quaternion 𝐯𝑑 𝐯𝑑 = 1 + 3𝜀𝑖 + 4𝜀𝑗 + 5𝜀𝑘

Rotation as dual quaternion 𝐪𝑟 𝐪𝑟 = cos
𝜃

2
+ 1𝑖 ∙ sin

𝜃

2
+ 0𝑗 + 0𝑘 = 𝑖

Translation as a dual quaternion 𝐪𝑡 𝐪𝑡 = 1 + 2𝜀𝑖 + 1𝜀𝑗 + 3𝜀𝑘

Combination as dual quaternion 𝐪𝑇

𝐪𝑇 = 𝐪𝑡 ⋅ 𝐪𝑟 = 1 + 2𝑖𝜀 + 1𝑗𝜀 + 3𝑘𝜀 ⋅ 𝑖 = 𝑖 − 2𝜀 − 1𝜀𝑘 + 3𝜀𝑗

Robotics I: Introduction to Robotics | Chapter 189

Duale Quaternions: Example (2)

Example: Rotation of point 𝐩 = (3, 4, 5)⊤

around rotation axis 𝐚 = (1, 0, 0)⊤ with 𝜃 = 180°
and translation with 𝐩𝑡 = (4, 2, 6)⊤

𝐪𝑇 = 0 + 𝑖 + 𝜀 −2 − 1𝑘 + 3𝑗 = 𝑖 − 2𝜀 − 1𝜀𝑘 + 3𝜀𝑗
𝐪𝑇
∗ = 0 − 𝑖 − 𝜀 −2 + 1𝑘 − 3𝑗 = −𝑖 + 2𝜀 + 3𝜀𝑗 − 1𝜀𝑘

Transformation:
𝐯𝑇 = 𝐪𝑇 𝐯𝑑 𝐪𝑇

∗ = 𝑖 − 2𝜀 − 1𝜀𝑘 + 3𝜀𝑗 1 + 3𝜀𝑖 + 4𝜀𝑗 + 5𝜀𝑘 𝐪𝑇
∗

= 𝑖 − 5𝜀 − 2𝜀𝑗 + 3𝜀𝑘 −𝑖 + 2𝜀 + 3𝜀𝑗 − 1𝜀𝑘

= 1 + 7𝜀𝑖 − 2𝜀𝑗 + 1𝜀𝑘

Result: 𝐩𝑇 = (7, −2, 1)⊤

Robotics I: Introduction to Robotics | Chapter 190

Duale Quaternions: Example (3)

Example: Rotation of point 𝐩 = (3, 4, 5)⊤

around rotation axis 𝐚 = (1, 0, 0)⊤ with 𝜃 = 180°
and translation with 𝐩𝑡 = (4, 2, 6)⊤

Result: 𝐩𝑇 = (7, −2, 1)⊤

Test:

▪ Rotation around the 𝑥 axis with 𝜙 = 180°

𝐩𝑟 = (3,−4,−5)⊤

▪ Translation with 𝐩𝑡 = (4,2,6)⊤:

𝐩𝑇 = 𝐩𝑟 + 𝐩𝑡 = (3,−4,−5)⊤+(4, 2, 6)⊤= 7,−2, 1 ⊤

Robotics I: Introduction to Robotics | Chapter 191

Dual Quaternions: Evaluation

Advantages:

Dual quaternions are suitable for describing the pose of an object

Operations on dual quaternions also allow all required transformations

Low redundancy, as only 8 values compared to 12 values of the homogeneous
matrix representation

Generally low number of individual operations per arithmetic operation

Disadvantages:

Difficulty for the user to describe a pose by specifying a dual quaternion

Complex processing instructions (e.g. for multiplication)

Robotics I: Introduction to Robotics | Chapter 192

Summary

Different forms of representation for rotations and translations in Euclidean
space

▪ Rotation matrix and translation vector

▪ Euler angles

▪ Homogeneous 4𝑥4 matrix

▪ Quaternions

▪ Dual quaternions

Each representation has specific advantages and disadvantages

Concrete application determines the choice of method

